Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(2-Bromophenyl)iminomethyl]-6methylphenol

Aslı Tosyalı Karadağ,^a* Şehriman Atalay^a and Hasan Genç^b

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Yüzüncü Yıl Univercity, 65250 Van, Turkey Correspondence e-mail: asli.karadag@omu.edu.tr

Received 18 October 2010; accepted 22 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.080; data-to-parameter ratio = 18.3.

In the title compound, $C_{14}H_{12}BrNO$, is a Schiff base which adopts the phenol-imine tautomeric form in the solid state. The dihedral angle between the two aromatic rings is 34.26 (9)° and an intramolecular $O-H\cdots N$ hydrogen bond generates an S(6) ring.

Related literature

For Schiff bases and their applications, see: Calligaris *et al.* (1972); Singh *et al.* (1975). For a related structure, see: Temel *et al.* (2007).

Experimental

C14H12BrNO
$M_r = 290.16$
Orthorhombic, P212121
a = 7.9407 (4) Å
b = 11.6754 (8) Å
c = 13.1960 (6) Å

 $V = 1223.41 (12) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 3.34 \text{ mm}^{-1}$ T = 296 K $0.47 \times 0.39 \times 0.24 \text{ mm}$

Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.358, T_{max} = 0.525$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.080$ S = 1.072929 reflections 160 parameters H atoms treated by a mixture of independent and constrained refinement 21115 measured reflections 2929 independent reflections 2427 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$

 $\begin{array}{l} \Delta \rho_{max} = 0.64 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.27 \ e \ \mathring{A}^{-3} \\ Absolute structure: Flack (1983), \\ 1229 \ Friedel pairs \\ Flack parameter: -0.003 (10) \end{array}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O1-H1···N1	0.89 (4)	1.81 (3)	2.611 (3)	149 (3)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors wish to acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5384).

References

Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.

Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642. supplementary materials

Acta Cryst. (2010). E66, o2977 [doi:10.1107/S1600536810043072]

2-[(2-Bromophenyl)iminomethyl]-6-methylphenol

A. T. Karadag, S. Atalay and H. Genç

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Calligaris *et al.*, 1972). Schiff bases derived from aromatic amines and aromatic aldehydes have a wide variety of applications in many fields, *e.g.*, biological, inorganic and analytical chemistry (Singh *et al.*, 1975).

Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom.

The overall behaviour of these compounds has been ascribed to a proton-transfer reaction between a phenol-imine and a keto-amine tautomer. In solution, the existence of this tautomerism, which depends on the formation of intramolecular hydrogen bonds, is possible.

X-ray investigation of the title compound, (I), has indicated that the phenol-imine tautomer is favoured over the ketoamine tautomer. Bond lengths (Fig. 1) C2—O1 [1.364 (3) Å], C7—N1 [1.285 (3) Å], C1—C7 [1.451 (4) Å] and C1—C2 [1.403 (4) Å]. The C2—O1 bond length of 1.364 (3) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.285 (3) Å indicates a high degree of double-bond character. Similar results were observed for (E)-3-[(2-fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel *et al.*, 2007].

N····H—O hydrogen bond generate an S(6) ring motif (Fig. 1).

Experimental

The compound 2-[(2-Bromophenylimino) methyl]-6- methylphenol was prepared by reflux a mixture of a solution containing 3-Methylsalicylaldehyde (0.05 g 0.36 mmol) in 20 ml e thanol and a solution containing 2-Bromoaniline(0.062 g 0.36 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of 2-[(2-Bromophenylimino) methyl]-6- methylphenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 63; m.p.418–420 K).

Refinement

H atoms were positioned geometrically with distances 0.93 Å for aromatic C—H, 0.97 Å for methylene C—H, 0.86 Å for O—H hydroxyl group and refined a riding model with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability.

2-[(2-Bromophenyl)iminomethyl]-6-methylphenol

C ₁₄ H ₁₂ BrNO	F(000) = 584
$M_r = 290.16$	$D_{\rm x} = 1.575 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 23647 reflections
a = 7.9407 (4) Å	$\theta = 2.3 - 28.0^{\circ}$
b = 11.6754 (8) Å	$\mu = 3.34 \text{ mm}^{-1}$
c = 13.1960 (6) Å	<i>T</i> = 296 K
$V = 1223.41 (12) \text{ Å}^3$	Prism, yellow
<i>Z</i> = 4	$0.47\times0.39\times0.24~mm$

Data collection

Stoe IPDS 2 diffractometer	2929 independent reflections
Radiation source: fine-focus sealed tube	2427 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.067$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
rotation method scans	$h = -10 \rightarrow 10$
Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002)	$k = -15 \rightarrow 15$
$T_{\min} = 0.358, T_{\max} = 0.525$	$l = -17 \rightarrow 17$
21115 measured reflections	

Refinement

Refinement on F^2 Hydrosites	gen site location: inferred from neighbouring
Least-squares matrix: full H ator constr	ns treated by a mixture of independent and ained refinement
$R[F^2 > 2\sigma(F^2)] = 0.035$ $w = 1/2$ where	$[\sigma^{2}(F_{o}^{2}) + (0.0416P)^{2} + 0.0403P]$ $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.080 \qquad (\Delta/\sigma)_{\rm m}$	hax = 0.001
$S = 1.07$ $\Delta \rho_{max}$	$= 0.64 \text{ e} \text{ Å}^{-3}$
2929 reflections $\Delta \rho_{min}$	$= -0.27 \text{ e} \text{ Å}^{-3}$

160 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
0 restraints	Extinction coefficient: 0.0200 (16)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1229 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.003 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
H1	0.744 (4)	0.652 (3)	0.652 (3)	0.062 (9)*
Br1	0.79638 (5)	0.84452 (3)	0.81971 (3)	0.07572 (15)
C4	0.7065 (4)	0.5259 (2)	0.3545 (2)	0.0582 (7)
H4	0.6400	0.4945	0.3036	0.070*
N1	0.9650 (3)	0.68078 (17)	0.67303 (16)	0.0487 (5)
C7	1.0181 (3)	0.6620(2)	0.58252 (19)	0.0477 (5)
H7	1.1302	0.6768	0.5669	0.057*
C5	0.8731 (4)	0.5467 (3)	0.3351 (2)	0.0609 (7)
Н5	0.9181	0.5292	0.2719	0.073*
C1	0.9072 (3)	0.6182 (2)	0.50413 (18)	0.0452 (5)
01	0.6641 (2)	0.62056 (19)	0.61369 (15)	0.0596 (5)
C2	0.7361 (3)	0.5966 (2)	0.52228 (18)	0.0457 (6)
C10	1.3450 (4)	0.7113 (3)	0.8347 (3)	0.0666 (8)
H10	1.4553	0.6848	0.8380	0.080*
C13	1.0198 (4)	0.7883 (2)	0.8254 (2)	0.0527 (6)
C9	1.2424 (4)	0.6774 (2)	0.7555 (2)	0.0569 (7)
Н9	1.2843	0.6284	0.7060	0.068*
C6	0.9732 (4)	0.5931 (3)	0.40857 (19)	0.0568 (7)
Н6	1.0860	0.6080	0.3949	0.068*
C3	0.6334 (4)	0.5500 (2)	0.4475 (2)	0.0503 (6)
C8	1.0769 (3)	0.7162 (2)	0.7491 (2)	0.0482 (6)
C11	1.2857 (5)	0.7834 (3)	0.9084 (3)	0.0683 (8)
H11	1.3557	0.8059	0.9613	0.082*
C14	0.4513 (4)	0.5289 (3)	0.4673 (3)	0.0710 (8)
H14A	0.4396	0.4770	0.5233	0.106*
H14B	0.4003	0.4960	0.4081	0.106*
H14C	0.3967	0.6000	0.4832	0.106*

supplementary materials

C12	1.1230 (5)	0.8226 (3)	0.9041 (2)	0.0626 (8)
H12	1.0823	0.8718	0.9538	0.075*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0655 (2)	0.0941 (2)	0.06760 (19)	0.01958 (17)	0.00516 (17)	-0.00921 (17)
C4	0.0647 (17)	0.0583 (15)	0.0515 (13)	0.0010 (15)	-0.0149 (14)	-0.0035 (11)
N1	0.0488 (11)	0.0516 (11)	0.0456 (10)	-0.0009 (8)	-0.0020 (10)	-0.0013 (10)
C7	0.0435 (12)	0.0506 (12)	0.0490 (13)	-0.0016 (12)	0.0018 (11)	0.0009 (12)
C5	0.0707 (18)	0.0695 (17)	0.0425 (14)	0.0056 (15)	0.0005 (13)	-0.0047 (13)
C1	0.0471 (13)	0.0462 (13)	0.0422 (11)	0.0007 (10)	0.0007 (11)	0.0048 (9)
01	0.0456 (10)	0.0832 (14)	0.0500 (10)	-0.0008 (9)	0.0042 (9)	-0.0049 (9)
C2	0.0469 (14)	0.0450 (12)	0.0450 (12)	0.0035 (10)	0.0006 (10)	0.0046 (10)
C10	0.0527 (16)	0.0665 (17)	0.081 (2)	-0.0055 (13)	-0.0152 (15)	-0.0016 (16)
C13	0.0576 (15)	0.0524 (13)	0.0482 (13)	-0.0044 (12)	0.0004 (14)	0.0009 (13)
C9	0.0486 (15)	0.0564 (16)	0.0657 (16)	-0.0019 (11)	-0.0052 (12)	-0.0064 (12)
C6	0.0542 (15)	0.0695 (17)	0.0467 (14)	0.0024 (13)	0.0078 (13)	0.0004 (13)
C3	0.0466 (13)	0.0507 (13)	0.0536 (14)	0.0009 (11)	-0.0083 (12)	0.0049 (11)
C8	0.0492 (14)	0.0464 (13)	0.0489 (13)	-0.0062 (11)	-0.0030 (12)	0.0016 (11)
C11	0.073 (2)	0.0618 (17)	0.0697 (18)	-0.0122 (16)	-0.0224 (18)	0.0005 (14)
C14	0.0507 (17)	0.083 (2)	0.079 (2)	-0.0072 (15)	-0.0082 (16)	-0.0021 (18)
C12	0.077 (2)	0.0556 (17)	0.0554 (15)	-0.0096 (15)	-0.0013 (15)	-0.0058 (13)

Geometric parameters (Å, °)

1.893 (3)	C10-C11	1.370 (5)
1.370 (5)	С10—С9	1.383 (4)
1.386 (4)	C10—H10	0.9300
0.9300	C13—C12	1.382 (4)
1.285 (3)	C13—C8	1.388 (4)
1.402 (3)	С9—С8	1.392 (4)
1.451 (4)	С9—Н9	0.9300
0.9300	С6—Н6	0.9300
1.366 (4)	C3—C14	1.490 (4)
0.9300	C11—C12	1.372 (5)
1.397 (4)	C11—H11	0.9300
1.403 (4)	C14—H14A	0.9600
1.364 (3)	C14—H14B	0.9600
0.89 (4)	C14—H14C	0.9600
1.390 (4)	C12—H12	0.9300
122.3 (3)	С10—С9—Н9	119.7
118.9	С8—С9—Н9	119.7
118.9	C5—C6—C1	120.4 (3)
120.5 (2)	С5—С6—Н6	119.8
121.6 (2)	С1—С6—Н6	119.8
119.2	C4—C3—C2	117.5 (3)
119.2	C4—C3—C14	121.8 (3)
	$\begin{array}{l} 1.893 (3) \\ 1.370 (5) \\ 1.386 (4) \\ 0.9300 \\ 1.285 (3) \\ 1.402 (3) \\ 1.402 (3) \\ 1.451 (4) \\ 0.9300 \\ 1.366 (4) \\ 0.9300 \\ 1.366 (4) \\ 0.9300 \\ 1.397 (4) \\ 1.403 (4) \\ 1.397 (4) \\ 1.403 (4) \\ 1.364 (3) \\ 0.89 (4) \\ 1.390 (4) \\ 122.3 (3) \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 120.5 (2) \\ 121.6 (2) \\ 119.2 \\ 119.2 \end{array}$	1.893 (3) $C10-C11$ 1.370 (5) $C10-C9$ 1.386 (4) $C10-H10$ 0.9300 $C13-C12$ 1.285 (3) $C13-C8$ 1.402 (3) $C9-C8$ 1.451 (4) $C9-H9$ 0.9300 $C6-H6$ 1.366 (4) $C3-C14$ 0.9300 $C11-C12$ 1.397 (4) $C11-H11$ 1.403 (4) $C14-H14A$ 1.364 (3) $C14-H14B$ 0.89 (4) $C12-H12$ 122.3 (3) $C10-C9-H9$ 118.9 $C5-C6-C1$ 120.5 (2) $C5-C6-H6$ 121.6 (2) $C1-C6-H6$ 119.2 $C4-C3-C2$ 119.2 $C4-C3-C14$

C6—C5—C4	120.0 (3)	C2—C3—C14	120.7 (3)
С6—С5—Н5	120.0	C13—C8—C9	117.4 (3)
С4—С5—Н5	120.0	C13—C8—N1	119.4 (3)
C6—C1—C2	118.7 (2)	C9—C8—N1	123.1 (2)
C6—C1—C7	119.3 (3)	C10-C11-C12	119.9 (3)
C2—C1—C7	122.0 (2)	C10-C11-H11	120.0
C2—O1—H1	107 (2)	C12—C11—H11	120.0
O1—C2—C3	117.5 (2)	C3—C14—H14A	109.5
O1—C2—C1	121.3 (2)	C3—C14—H14B	109.5
C3—C2—C1	121.2 (2)	H14A—C14—H14B	109.5
C11—C10—C9	120.7 (3)	C3—C14—H14C	109.5
C11—C10—H10	119.7	H14A—C14—H14C	109.5
C9—C10—H10	119.7	H14B—C14—H14C	109.5
C12—C13—C8	121.8 (3)	C11—C12—C13	119.5 (3)
C12—C13—Br1	119.0 (2)	C11—C12—H12	120.2
C8—C13—Br1	119.2 (2)	C13—C12—H12	120.2
С10—С9—С8	120.6 (3)		
C8—N1—C7—C1	176.0 (2)	C1—C2—C3—C4	0.0 (4)
C3—C4—C5—C6	-0.2 (5)	O1—C2—C3—C14	0.7 (4)
N1—C7—C1—C6	-176.4 (3)	C1—C2—C3—C14	-179.2 (3)
N1—C7—C1—C2	1.4 (4)	C12—C13—C8—C9	1.1 (4)
C6—C1—C2—O1	-179.3 (2)	Br1—C13—C8—C9	179.5 (2)
C7—C1—C2—O1	2.9 (4)	C12-C13-C8-N1	177.7 (2)
C6—C1—C2—C3	0.6 (4)	Br1—C13—C8—N1	-4.0 (3)
C7—C1—C2—C3	-177.2 (2)	C10-C9-C8-C13	-0.7 (4)
C11—C10—C9—C8	0.1 (5)	C10-C9-C8-N1	-177.1 (3)
C4—C5—C6—C1	0.8 (5)	C7—N1—C8—C13	147.8 (2)
C2-C1-C6-C5	-1.0 (4)	C7—N1—C8—C9	-35.8 (4)
C7—C1—C6—C5	176.9 (3)	C9—C10—C11—C12	0.1 (5)
C5—C4—C3—C2	-0.2 (4)	C10-C11-C12-C13	0.3 (5)
C5—C4—C3—C14	179.0 (3)	C8—C13—C12—C11	-0.9 (4)
O1—C2—C3—C4	179.9 (2)	Br1-C13-C12-C11	-179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N1	0.89 (4)	1.81 (3)	2.611 (3)	149 (3)

Fig. 1